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Abstract
The famous Gordon formula for matrix element 〈n′, l|r|n, l−1〉 is transformed
into a new form which can be easily treated when n′, n and l are all large. Then
its asymptotic expression is derived which turns out to be that obtained from
Heisenberg’s correspondence principle. Finally, its classical limit form is used
to construct classical quantities x, y and z representing a singe Keplerian orbit
in terms of a Fourier series of time variable t .

PACS number: 0365S

The quantum-to-classical correspondence is a question of fundamental importance, and
there are not only conceptual but also technical problems involved in various forms of the
correspondence. Since the solution to the hydrogen atom laid the cornerstone of quantum
mechanics, a close examination of its quantum-to-classical correspondence is always needed
in each form of them. This paper aims to present a study of the hydrogen atom’s quantum-to-
classical correspondence in light of Heisenberg’s correspondence principle.

The preliminary form of Heisenberg’s correspondence principle clearly presents in the
classic work of Heisenberg himself [1]. Let a classical system be quantized semiclassically,
i.e. let the classical action Jk be quantized as Jk = nkh̄ (nk = 1, 2, . . .), Heisenberg concluded
from empirical facts an approximate identity for a general coordinate q when quantum numbers
are large: ∫

ψ∗
n+k(q, t)qψn(q, t) dx = 〈n + k|q|n〉ei(En+k−En)t/h̄

≈ qk(n)eikω(n)t (1)
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where qk(n) is the kth Fourier component of classical coordinate q and ω(n) is the classical
frequency [1]. There has been a steady interest in and development of Heisenberg’s
correspondence principle, mostly related to studies of quantum chaos and/or the Rydberg
(highly excited hydrogen-like) atom [2–10]. In modern notion, Heisenberg’s correspondence
principle can be stated as follows. The matrix element (ME) of an operator with
respect to states with quantum numbers n and m is approximately the (n − m)th
Fourier component of the operator’s classical function evaluated on the so-called average
quantized torus [9, 10]. For the sake of brevity, the true quantum mechanical ME and that
obtained from Heisenberg’s correspondence principle are abbreviated to QME and HME
respectively.

Owing to its exclusive importance, applications of Heisenberg’s correspondence principle
to the hydrogen atom attract special attention. Among those successful applications, the
fundamental one is the evaluation of the radial ME of the dipole moment (h̄ = µ = e = 1
throughout this paper),

〈n + k, l|r|n, l − 1〉 =
∫ ∞

0
Rn+k,l(r)Rn,l−1(r)r

3 dr (k 
= 0) (2)

which is, from Heisenberg’s correspondence principle, [3–5],

〈n + k, l|r|n, l − 1〉 = n2
c

k

[
J ′
k(kεc)−

√
1 − ε2

c

εc
Jk(kεc)

]
(k 
= 0) (3)

where nc is some mean of quantum numbers n+k and n; εc =
√

1 − (lc/nc)2 is the eccentricity;
and lc is some mean of l and l − 1. It is understandable that, for achieving the best fit to the
QME with small quantum numbers, the definitions of mean nc or lc in (3) are different from
paper to paper [3,4,9,10]. The mean could be, for example, arithmetic, geometric, harmonic,
quadratic and reciprocal quadratic [11], and all comparisons are performed numerically in the
region of the principal quantum number �20 [3, 12]. However, when n, l and n− l are much
greater than 1, and k is relatively small, whether the mean is used, we have

nc ≈ n lc ≈ l and εc ≈ ε =
√

1 − (l/n)2. (4)

Then the HME (3) should well approximate with the following QME (5) which was first
obtained by Gordon [13]:

〈n′, l|r|n, l − 1〉 = (−1)n−l
1

4(2l − 1)!

√
(n′ + l)!(n + l − 1)!

((n′ − l − 1)!(n− l)!) (4n
′n)l+1 (n

′ − n)n′+n−2l−2

(n′ + n)(n′+n)

×
(
F

(
−(n′ − l − 1),−(n− l); 2l; −4n′n

(n′ − n)2
)

−
(
n′−n
n′ + n

)2

×F
(

−(n′ − l + 1),−(n− l); 2l; −4n′n
(n′ − n)2

))
(n′ 
= n). (5)

As Gordon himself knew [13] and paper [14] emphasized, the Gordon formula can hardly
apply to quantitative estimations or direct calculations with large values of n′, n and l, because
all the three parameters and the argument of the hypergeometric function are large. So, there
has not yet been any analytical work comparing the two MEs (5) and (3). Filling the gap is
the principal goal of this paper.

The key step to simplify the Gordon formula (5) is to use a relation between hypergeometric
functions with different arguments x and 1/(1 − x). For positive integers −a, −b and c with
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0 > a � b, we have5:

F(a, b; c; x) = (−1)a(1 − x)−a �(c)

�(c − a)
(−b)!
(a − b)!F

(
a, c − b; a − b + 1; 1

(1 − x)
)

(6)

which can apply to the case a � b < 0 after simply interchanging a and b in the RHS of the
identity. By using this relation, the Gordon formula can be transformed into a more convenient
form such as

〈n′, l|r|n, l − 1〉 = 4l
(

n′ n
(n′ + n)2

)1+l (−n′ + n

n′ + n

)n−n′ √
(l + n′) (−l + n)! (l + n)!

(l + n) (−1 − l + n′)! (−1 + l + n′)!

×
[

1

(l + n′) �(−n′ + n)

(
n′+n
n′ − n

)2

F

(
− 1 + l − n′, l + n; −n′ + n; (n

′ − n)2
(n′ + n)2

)

− (−1 + l + n′)
�(2 − n′ + n)

F

(
1 + l − n′, l + n; 2 − n′ + n; (n

′ − n)2
(n′ + n)2

)]
. (7)

This expression can apply in the casen > n′. While in the casen < n′, the QME 〈n′, l|r|n, l−1〉
is

〈n′, l|r|n, l − 1〉 = 4l
(

n′ n
(n′ + n)2

)1+l (
n′ − n
n′ + n

)n′−n
√
(−l + n′) (−l + n′)! (l + n′)!
(−l + n) (−1 − l + n)! (l + n)![

1

(−l + n′) �(n′ − n)
(
n′+n
n′ − n

)2

F

(
l − n, 1 + l + n′, n′ − n, (n

′ − n)2
(n′ + n)2

)

− (1 − l + n′)
�(2 + n′ − n)F

(
l − n, 1 + l + n′, 2 + n′ − n, (n

′ − n)2
(n′ + n)2

)]
. (8)

In this paper, we like to give the detailed steps to simplify (7). The same steps can
simplify (8). Let n′ = n + k with k � 1, the expression (7) is

〈n + k, l|r|n, l − 1〉 = 4l
(
n (k + n)

(k + 2 n)2

)1+l (
k

k + 2 n

)k

×
√

(l + n) (k − l + n)! (k + l + n)!

(k + l + n) (−1 − l + n)! (−1 + l + n)!

×
[

1

(l + n) �(k)

(k + 2 n)2

k2
F

(
− 1 + l − n, k + l + n; k; k2

(k + 2 n)2

)

− (−1 + l + n)

�(2 + k)
F

(
1 + l − n, k + l + n; 2 + k; k2

(k + 2 n)2

)]
. (9)

The factors in (9) can be rewritten one by one as

(
n (k + n)

(k + 2 n)2

)1+l

= 1

4l+1



(

1 −
(
k

2n

)2 1

(1 + k/2n)2

)l+1

 ≈ 1

4l+1
(10)

k

k + 2 n
= k

(2 n)

{(
1 +

k

2n

)−1
}

≈ k

(2 n)
(11)

5 Note that the usual literature gives the formula F(a, b; c; z) = (1 − z)−a �(c)
�(b)

�(b−a)
�(c−a) F (a, c− b; a− b + 1; 1

(1−z) )+
(a � b), which can apply when | arg(1−z)| < π , a−b 
= m, (m = 0, 1, 2, 3, . . .) [15,16]. Whenm is an integer, one
can verify the correctness of our formula (6) by direct comparison of the coefficients before xu (u = 0, 1, 2, 3, . . .)
on both sides of it.



5716 Q H Liu and B Hu

(l + n) (k − l + n)! (k + l + n)!

(k + l + n) (−1 − l + n)! (−1 + l + n)!

= (nε)2(k+1)

{(
1 +

k

n + l

)−1 k∏
i=0

(
1 +

i

n− l
)(

1 +
i

n + l

)}
≈ (nε)2(k+1) (12)

F

(
−1 + l − n, k + l + n; k; k2

(k + 2 n)2

)

= (k − 1)!
n−l+1∑
s=0

(−1)s

s!(s + k − 1)!

(
kε

2

)2s

×
{
δs0 + δ̄s0

(
1 +

k

2n

)−2s s−1∏
i=0

(
1 − i − 1

n− l
)(

1 +
i + k

n + l

)}

≈ (k − 1)!
n−l+1∑
s=0

(−1)s

s!(s + k − 1)!

(
kε

2

)2s

(13)

F

(
1 + l − n, k + l + n; k + 2; k2

(k + 2 n)2

)

= (k + 1)!
n−l−1∑
s=0

(−1)s

s!(s + k + 1)!

(
kε

2

)2s

×
{
δs0 + δ̄s0

(
1 +

k

2n

)−2s s−1∏
i=0

(
1 − i + 1

n− l
)(

1 +
i + k

n + l

)}

≈ (k + 1)!
n−l−1∑
s=0

(−1)s

s!(s + k + 1)!

(
kε

2

)2s

(14)

where the approximation holds only when n, l and n − l are much greater than 1 and k is
relatively small; and

δs0 =
{

1 s = 0

0 s 
= 0
and δ̄s0 =

{
1 s 
= 0

0 s = 0.

Noting that the resulting series in equations (13) and (14) are the first (n− l−1) and (n− l + 1)
terms of Bessel functions of integer order k − 1 and k + 1 respectively, this can be used to
approximate the Bessel function. Since the Bessel function Jk(z) of integer order k consists
of an infinite alternating series as Jk(z) = ∑∞

s=0
(−1)s

(k+s)!s! (
z
2 )

2s+k , the absolute error of using
the truncated Bessel function involving only the first N terms to represent the function itself
is less than the absolute value of the (N + 1)th term. We can define a ratio of it to the first
term as |( z2 )2N+k((k +N)!N !)−1/( z2 )

k(k!N !)−1| to estimate the relative error. In our problem,
z � k + 1. When n, l and n − l are much larger than 1, there are n − l + 2 terms in the
series (13), and n− l, in (14). The ratio is extremely small. For example, when N = 30, the
error is less than 3.16 × 10−11; and when N = 100, the error is less than 5.77 × 10−35. Then
the asymptotic QME expression 〈n′, l|r|n, l − 1〉 (8) is

〈n + k, l|r|n, l − 1〉 ≈ 4l
(

1

4l+1

)(
k

2 n

)k
(n ε)(k+1)

×
[

1

(l + n)

(2n)2

k2

n−l+1∑
s=0

(−1)s
1

s!(k + s − 1)!

(
kε

2

)2s
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− (−1 + l + n)
n−l−1∑
s=0

(−1)s
1

s!(k + s + 1)!

(
kε

2

)2s
]

= n ε

4

(
2n

kε

)[
n ε2

l + n

n−l+1∑
s=0

(−1)s
1

s!(k + s − 1)!

(
kε

2

)2s+k−1

−n + l − 1

n

n−l−1∑
s=0

(−1)s
1

s!(k + s + 1)!

(
kε

2

)2s+k+1
]

≈ n2

2k

[(
1 − l

n

)
Jk−1(kε)−

(
1 +

l

n

)
Jk+1(kε)

]

= n2

k

[
J ′
k(kε)−

√
1 − ε2

ε
Jk(kε)

]
. (15)

In the last step, we used the recursion relations [15], 2J ′
k(z) = Jk−1(z) − Jk+1(z) and

(2k/z)Jk(z) = Jk−1(z) + Jk+1(z). If we start from the equation (8), the same expression (15)
will be obtained, but with k � 1. So, equation (15) in fact holds true as long as k is a nonzero
integer.

From the studies above, we see that when quantum numbers are large and k is small, the
QME (5) is in asymptotic agreement with the HME (3). The difference between these two
MEs decreases from equations (10) to (14) as 1/N (N = n, l, n− 1) when N → ∞.

Note that HME (3) was obtained from the semiclassical quantities x, y and z expressed
in terms of a Fourier series of three angle angles ω, θ and φ [2, 3] rather than a single time
variable t . On one hand, the dependence on angles is rather a geometrical relation, while that
on time is rather an evolution equation of time. One cannot directly obtain the latter from the
former. On the other hand, the classical limit of expectation values of quantities x, y and z
in some wavepacket becomes the classical quantities, and the form is not the exact Fourier
timeseries t but its Fejér average [17]. It is therefore interesting to construct, from classical
limit of the HMEs, the classical quantities x, y and z in terms of the exact Fourier series. For
our purposes, for a one-dimensional system, we construct a quantity fq(t); that is,

fq(t) =
∞∑
n′=0

〈n′|f |n〉 exp[i(En′ − En)t/h̄] =
∞∑

k=−n
〈n + k|f |n〉 exp[i(En+k − En)t/h̄] (16)

where the symbol
∑

denotes summation over discrete quantum numbers, and the integral over
the possible continuous ones. The reason why this quantity is constructed is that Heisenberg’s
correspondence principle (1) implies the following when the quantum number is large:

fq(t) in large quantum number case → the classical quantity f (t) (17)

where ‘→’ can be replaced by ‘=’ in the classical limit n → ∞ [17]. Analogously, for the
hydrogen atom, equation (16) can be written as

fq(t) =
∞∑
n′=1

n′−1∑
l′=0

l′∑
m′=−l′

〈n′l′m′|f |nlm〉 exp[i(En′ − En)t/h̄]

=
∞∑

k=−n+1

( n+k−1∑
l′=0

l′∑
m′=−l′

〈(n + k)l′m′|f |nlm〉
)

exp[(iEn+k − Ent)/h̄]. (18)

Let f = x, y and z, once the result on radial ME, 〈n, l|r|n, l − 1〉 = −3n2ε/2 [3], is added,
equation (18) immediately leads to in the limit of infinite quantum numbers n, l and m, while
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keeping nh̄, lh̄ and mh̄ as classical actions:

x

a
= −m

l

[
− 3

2
ε +

∞∑
k=−∞,k 
=0

1

k
J ′
k(kε) exp(ikωt)

]

y

a
= −

√
1 − ε2

ε

∞∑
k=−∞,k 
=0

i

k
Jk(kε) exp(ikωt)

z

a
=

√
l2 −m2

l

[
− 3

2
ε +

∞∑
k=−∞,k 
=0

1

k
J ′
k(kε) exp(ikωt)

]
(19)

where a = n2a0 is the semi-major with a0 the Bohr radius. Now, x, y and z in (19) are
classical quantities representing a single Keplerian orbit characterized by classical energy
E = En, the angular momentum J = lh̄, its projections along the z-axis Jz = mh̄, and the
x-axis Jx = √

l2 −m2h̄ [2, 18].
Now we close this paper with the following summary. (1) The famous Gordon formula

for ME 〈n′, l|r|n, l− 1〉 is transformed into a new form which can be easily treated when n′, n
and l are all large. Then we have an asymptotic expression which turns out to be that obtained
from Heisenberg’s correspondence principle. We have noted that the quantum mechanics for
the Rydberg atom does not in general converge to the classical mechanics for the Kepler
system [19], whereas the QME has excellent classical correspondence. (2) Heisenberg’s
correspondence principle (1) implies that the classical limit form of QME can be used to
reproduce the classical quantity in terms of Fourier series of variable t , and such classical
quantities x, y and z for Keplerian motion are successfully constructed. In fact, we have
attempted to study the real part of the constructed quantity fq(t) in the small quantum number
case, results reveal that for some of the one-dimensional unbound systems which only have a
continuous spectrum of energy, fq(t) can sometimes be identical to f (t) [20].
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